ANOVA para selecionar Variáveis Preditoras a serem utilizadas em Cluster Analysis, PCA e ML Supervisionado para Classificação (Rede Neural, Random Forest, Support Vector Machine etc.)
Qualidade de Vida - Cluster Analysis (ML Não Supervisionado para Agrupamentos Multivariados)
data QV;
input Categ $ IMC Movim KCal;
cards;
ATL 20.9 60.9 3259
ATL 21.3 54.8 3100
ATL 19.3 49.6 2800
ATL 21.1 52.3 3300
SEMI 22.4 14.9 2600
SEMI 21.9 17.8 2700
SEMI 23.8 18.6 3200
SEMI 24.1 15.1 3300
SEDE 27.3 2.5 2700
SEDE 23.4 4.3 2300
SEDE 25.2 2.3 2600
SEDE 26.4 2.6 3200
PROF 26.2 4.1 2600
PROF 24.2 2.1 2700
PROF 25.4 1.9 2650
;
proc print;
run;
/* input Categ $ IMC Movim KCal;*/
proc anova;
class Categ;
model IMC Movim KCal = Categ;
means Categ / tukey lines;
run;
Cálculo de Medias por Pivot Table
Categ | IMC | Movim | Kcal |
ATL | 20,9 | 60,9 | 3259 |
ATL | 21,3 | 54,8 | 3100 |
ATL | 19,3 | 49,6 | 2800 |
ATL | 21,1 | 52,3 | 3300 |
SEMI | 22,4 | 14,9 | 2600 |
SEMI | 21,9 | 17,8 | 2700 |
SEMI | 23,8 | 18,6 | 3200 |
SEMI | 24,1 | 15,1 | 3300 |
SEDE | 27,3 | 2,5 | 2700 |
SEDE | 23,4 | 4,3 | 2300 |
SEDE | 25,2 | 2,3 | 2600 |
SEDE | 26,4 | 2,6 | 3200 |
PROF | 26,2 | 4,1 | 2600 |
PROF | 24,2 | 2,1 | 2700 |
PROF | 25,4 | 1,9 | 2650 |
Cluster com Variáveis Preditoras Significativas Comparar com Todas
Primeiro com Todas as Variáveis Preditoras
data pessoas;
input cat $ imc corr kcal;
cards;
Médias Calculadas por Tabela Dinâmica
;
proc cluster data=pessoas outtree = arvore method = average;
var imc corr kcal;
id cat;
run;
PROC TREE DATA = arvore;
RUN;
Agora Fazer somente com as Variáveis Preditoras Significativas
Somente muda este comando
var imc corr;
Dinheiro Falso - Rede Neural (ML S para Clasif.)
Programa SAS
data apolinario;
input obs Status length Left Rigth Bottom Top Diagonal Transpar;
cards;
1 0 214.8 131 131.1 9 9.7 141.459 8.342459
2 0 214.6 129.7 129.7 8.1 9.5 141.7 9.005343
3 0 214.8 129.7 129.7 8.7 9.6 142.2 4.293085
4 0 214.8 129.7 129.6 7.5 10.4 142 5.281225
5 0 215 129.6 129.7 10.4 7.7 141.8 1.513307
6 0 215.7 130.8 130.5 9 10.1 141.4 5.739582
7 0 215.5 129.5 129.7 7.9 9.6 141.6 3.58029
8 0 214.5 129.6 129.2 7.2 10.7 141.7 8.620212
9 0 214.9 129.4 129.7 8.2 11 141.9 6.128928
10 0 215.2 130.4 130.3 9.2 10 140.7 1.225479
11 0 215.3 130.4 130.3 7.9 11.7 141.8 0.442973
12 0 215.1 129.5 129.6 7.7 10.5 142.2 9.165131
13 0 215.2 130.8 129.6 7.9 10.8 141.4 3.034573
14 0 214.7 129.7 129.7 7.7 10.9 141.7 4.929624
15 0 215.1 129.9 129.7 7.7 10.8 141.8 3.996129
16 0 214.5 129.8 129.8 9.3 8.5 141.6 5.107183
17 0 214.6 129.9 130.1 8.2 9.8 141.7 3.666467
18 0 215 129.9 129.7 9 9 141.9 4.605725
19 0 215.2 129.6 129.6 7.4 11.5 141.5 6.26076
20 0 214.7 130.2 129.9 8.6 10 141.9 6.538608
21 0 215 129.9 129.3 8.4 10 141.4 0.450759
22 0 215.6 130.5 130 8.1 10.3 141.6 3.106727
23 0 215.3 130.6 130 8.4 10.8 141.5 2.091035
24 0 215.7 130.2 130 8.7 10 141.6 0.093906
25 0 215.1 129.7 129.9 7.4 10.8 141.1 7.069552
26 0 215.3 130.4 130.4 8 11 142.3 6.143458
27 0 215.5 130.2 130.1 8.9 9.8 142.4 2.899919
28 0 215.1 130.3 130.3 9.8 9.5 141.9 3.056647
29 0 215.1 130 130 7.4 10.5 141.8 7.640232
30 0 214.8 129.7 129.3 8.3 9 142 0.911595
31 0 215.2 130.1 129.8 7.9 10.7 141.8 9.286659
32 0 214.8 129.7 129.7 8.6 9.1 142.3 1.654785
33 0 215 130 129.6 7.7 10.5 140.7 9.087692
34 0 215.6 130.4 130.1 8.4 10.3 141 3.066002
35 0 215.9 130.4 130 8.9 10.6 141.4 9.669812
36 0 214.6 130.2 130.2 9.4 9.7 141.8 7.152279
37 0 215.5 130.3 130 8.4 9.7 141.8 5.814042
38 0 215.3 129.9 129.4 7.9 10 142 8.451992
39 0 215.3 130.3 130.1 8.5 9.3 142.1 8.270316
40 0 213.9 130.3 129 8.1 9.7 141.3 2.374091
41 0 214.4 129.8 129.2 8.9 9.4 142.3 7.882688
42 0 214.8 130.1 129.6 8.8 9.9 140.9 8.628963
43 0 214.9 129.6 129.4 9.3 9 141.7 6.522981
44 0 214.9 130.4 129.7 9 9.8 140.9 6.203108
45 0 214.8 129.4 129.1 8.2 10.2 141 6.605354
46 0 214.3 129.5 129.4 8.3 10.2 141.8 4.43922
47 0 214.8 129.9 129.7 8.3 10.2 141.5 1.899184
48 0 214.8 129.9 129.7 7.3 10.9 142 8.704295
49 0 214.6 129.7 129.8 7.9 10.3 141.1 2.990982
50 0 214.5 129 129.6 7.8 9.8 142 0.571166
51 0 214.6 129.8 129.4 7.2 10 141.3 6.407039
52 0 215.3 130.6 130 9.5 9.7 141.1 0.235993
53 0 214.5 130.1 130 7.8 10.9 140.9 3.450459
54 0 215.4 130.2 130.2 7.6 10.9 141.6 1.381513
55 0 214.5 129.4 129.5 7.9 10 141.4 1.621623
56 0 215.2 129.7 129.4 9.2 9.4 142 7.640185
57 0 215.7 130 129.4 9.2 10.4 141.2 1.496712
58 0 215 129.6 129.4 8.8 9 141.1 5.754074
59 0 215.1 130.1 129.9 7.9 11 141.3 0.169488
60 0 215.1 130 129.8 8.2 10.3 141.4 4.48128
61 0 215.1 129.6 129.3 8.3 9.9 141.6 0.338244
62 0 215.3 129.7 129.4 7.5 10.5 141.5 6.148626
63 0 215.4 129.8 129.4 8 10.6 141.5 3.799348
64 0 214.5 130 129.5 8 10.8 141.4 6.141745
65 0 215 130 129.8 8.6 10.6 141.5 5.479944
66 0 215.2 130.6 130 8.8 10.6 140.8 3.914293
67 0 214.6 129.5 129.2 7.7 10.3 141.3 0.979716
68 0 214.8 129.7 129.3 9.1 9.5 141.5 0.416134
69 0 215.1 129.6 129.8 8.6 9.8 141.8 4.493104
70 0 214.9 130.2 130.2 8 11.2 139.6 8.433149
71 0 213.8 129.8 129.5 8.4 11.1 140.9 3.194225
72 0 215.2 129.9 129.5 8.2 10.3 141.4 7.989399
73 0 215 129.6 130.2 8.7 10 141.2 9.189951
74 0 214.4 129.9 129.6 7.5 10.5 141.8 8.151371
75 0 215.2 129.9 129.7 7.2 10.6 142.1 1.175441
76 0 214.1 129.6 129.3 7.6 10.7 141.7 9.425796
77 0 214.9 129.9 130.1 8.8 10 141.2 0.608648
78 0 214.6 129.8 129.4 7.4 10.6 141 8.879565
79 0 215.2 130.5 129.8 7.9 10.9 140.9 3.996958
80 0 214.6 129.9 129.4 7.9 10 141.8 2.213717
81 0 215.1 129.7 129.7 8.6 10.3 140.6 8.99883
82 0 214.9 129.8 129.6 7.5 10.3 141 7.949556
83 0 215.2 129.7 129.1 9 9.7 141.9 4.350476
84 0 215.2 130.1 129.9 7.9 10.8 141.3 6.683159
85 0 215.4 130.7 130.2 9 11.1 141.2 5.799778
86 0 215.1 129.9 129.6 8.9 10.2 141.5 4.722314
87 0 215.2 129.9 129.7 8.7 9.5 141.6 8.674677
88 0 215 129.6 129.2 8.4 10.2 142.1 9.273823
89 0 214.9 130.3 129.9 7.4 11.2 141.5 5.012061
90 0 215 129.9 129.7 8 10.5 142 5.42594
91 0 214.7 129.7 129.3 8.6 9.6 141.6 8.5421
92 0 215.4 130 129.9 8.5 9.7 141.4 4.943298
93 0 214.9 129.4 129.5 8.2 9.9 141.5 8.712418
94 0 214.5 129.5 129.3 7.4 10.7 141.5 4.579332
95 0 214.7 129.6 129.5 8.3 10 142 7.852574
96 0 215.6 129.9 129.9 9 9.5 141.7 7.481017
97 0 215 130.4 130.3 9.1 10.2 141.1 1.91562
98 0 214.4 129.7 129.5 8 10.3 141.2 1.603
99 0 215.1 130 129.8 9.1 10.2 141.5 4.368422
100 0 214.7 130 129.4 7.8 10 141.2 9.289701
101 1 214.4 130.1 130.3 9.7 11.7 139.8 2.529576
102 1 214.9 130.5 130.2 11 11.5 139.5 5.231355
103 1 214.9 130.3 130.1 8.7 11.7 140.2 1.099865
104 1 215 130.4 130.6 9.9 10.9 140.3 9.704009
105 1 214.7 130.2 130.3 11.8 10.9 139.7 2.097141
106 1 215 130.2 130.2 10.6 10.7 139.9 4.749958
107 1 215.3 130.3 130.1 9.3 12.1 140.2 6.332
108 1 214.8 130.1 130.4 9.8 11.5 139.9 8.013084
109 1 215 130.2 129.9 10 11.9 139.4 7.333819
110 1 215.2 130.6 130.8 10.4 11.2 140.3 7.465903
111 1 215.2 130.4 130.3 8 11.5 139.2 1.776527
112 1 215.1 130.5 130.3 10.6 11.5 140.1 1.927405
113 1 215.4 130.7 131.1 9.7 11.8 140.6 2.87569
114 1 214.9 130.4 129.9 11.4 11 139.9 4.18792
115 1 215.1 130.3 130 10.6 10.8 139.7 1.133199
116 1 215.5 130.4 130 8.2 11.2 139.2 4.949746
117 1 214.7 130.6 130.1 11.8 10.5 139.8 2.076851
118 1 214.7 130.4 130.1 12.1 10.4 139.9 4.341875
119 1 214.8 130.5 130.2 11 11 140 6.873291
120 1 214.4 130.2 129.9 10.1 12 139.2 7.361863
121 1 214.8 130.3 130.4 10.1 12.1 139.6 6.160784
122 1 215.1 130.6 130.3 12.3 10.2 139.6 0.820162
123 1 215.3 130.8 131.1 11.6 10.6 140.2 8.199925
124 1 215.1 130.7 130.4 10.5 11.2 139.7 8.767972
125 1 214.7 130.5 130.5 9.9 10.3 140.1 4.518555
126 1 214.9 130 130.3 10.2 11.4 139.6 1.264342
127 1 215 130.4 130.4 9.4 11.6 140.2 8.712286
128 1 215.5 130.7 130.3 10.2 11.8 140 3.805659
129 1 215.1 130.2 130.2 10.1 11.3 140.3 1.132005
130 1 214.5 130.2 130.6 9.8 12.1 139.9 7.05902
131 1 214.3 130.2 130 10.7 10.5 139.8 0.147254
132 1 214.5 130.2 129.8 12.3 11.2 139.2 5.340653
133 1 214.9 130.5 130.2 10.6 11.5 139.9 1.035768
134 1 214.6 130.2 130.4 10.5 11.8 139.7 4.329426
135 1 214.2 130 130.2 11 11.2 139.5 7.190976
136 1 214.8 130.1 130.1 11.9 11.1 139.5 7.86245
137 1 214.6 129.8 130.2 10.7 11.1 139.4 6.169232
138 1 214.9 130.7 130.3 9.3 11.2 138.3 2.104685
139 1 214.6 130.4 130.4 11.3 10.8 139.8 1.850182
140 1 214.5 130.5 130.2 11.8 10.2 139.6 5.755739
141 1 214.8 130.2 130.3 10 11.9 139.3 0.750656
142 1 214.7 130 129.4 10.2 11 139.2 2.389343
143 1 214.6 130.2 130.4 11.2 10.7 139.9 6.203088
144 1 215 130.5 130.4 10.6 11.1 139.9 8.330734
145 1 214.5 129.8 129.8 11.4 10 139.3 8.650829
146 1 214.9 130.6 130.4 11.9 10.5 139.8 1.40345
147 1 215 130.5 130.4 11.4 10.7 139.9 7.332753
148 1 215.3 130.6 130.3 9.3 11.3 138.1 2.913333
149 1 214.7 130.2 130.1 10.7 11 139.4 4.863921
150 1 214.9 129.9 130 9.9 12.3 139.4 4.211332
151 1 214.9 130.3 129.9 11.9 10.6 139.8 0.956579
152 1 214.6 129.9 129.7 11.9 10.1 139 1.418857
153 1 214.6 129.7 129.3 10.4 11 139.3 6.479153
154 1 214.5 130.1 130.1 12.1 10.3 139.4 9.565215
155 1 214.5 130.3 130 11 11.5 139.5 8.19004
156 1 215.1 130 130.3 11.6 10.5 139.7 3.340708
157 1 214.2 129.7 129.6 10.3 11.4 139.5 4.539931
158 1 214.4 130.1 130 11.3 10.7 139.2 0.907883
159 1 214.8 130.4 130.6 12.5 10 139.3 5.111025
160 1 214.6 130.6 130.1 8.1 12.1 137.9 7.33093
161 1 215.6 130.1 129.7 7.4 12.2 138.4 5.010356
162 1 214.9 130.5 130.1 9.9 10.2 138.1 5.802157
163 1 214.6 130.1 130 11.5 10.6 139.5 1.915
164 1 214.7 130.1 130.2 11.6 10.9 139.1 4.298098
165 1 214.3 130.3 130 11.4 10.5 139.8 1.175106
166 1 215.1 130.3 130.6 10.3 12 139.7 8.925967
167 1 216.3 130.7 130.4 10 10.1 138.8 6.511685
168 1 215.6 130.4 130.1 9.6 11.2 138.6 5.318178
169 1 214.8 129.9 129.8 9.6 12 139.6 7.626296
170 1 214.9 130 129.9 11.4 10.9 139.7 9.92289
171 1 213.9 130.7 130.5 8.7 11.5 137.8 8.070468
172 1 214.2 130.6 130.4 12 10.2 139.6 3.852542
173 1 214.8 130.5 130.3 11.8 10.5 139.4 2.069325
174 1 214.8 129.6 130 10.4 11.6 139.2 0.986407
175 1 214.8 130.1 130 11.4 10.5 139.6 5.908994
176 1 214.9 130.4 130.2 11.9 10.7 139 7.349364
177 1 214.3 130.1 130.1 11.6 10.5 139.7 0.511428
178 1 214.5 130.4 130 9.9 12 139.6 5.119145
179 1 214.8 130.5 130.3 10.2 12.1 139.1 3.432399
180 1 214.5 130.2 130.4 8.2 11.8 137.8 8.753596
181 1 215 130.4 130.1 11.4 10.7 139.1 1.992127
182 1 214.8 130.6 130.6 8 11.4 138.7 9.226528
183 1 215 130.5 130.1 11 11.4 139.3 7.312417
184 1 214.6 130.5 130.4 10.1 11.4 139.3 6.073818
185 1 214.7 130.2 130.1 10.7 11.1 139.5 4.021342
186 1 214.7 130.4 130 11.5 10.7 139.4 7.331403
187 1 214.5 130.4 130 8 12.2 138.5 9.405799
188 1 214.8 130 129.7 11.4 10.6 139.2 7.806663
189 1 214.8 129.9 130.2 9.6 11.9 139.4 8.270527
190 1 214.6 130.3 130.2 12.7 9.1 139.2 6.934555
191 1 215.1 130.2 129.8 10.2 12 139.4 7.897621
192 1 215.4 130.5 130.6 8.8 11 138.6 1.874828
193 1 214.7 130.3 130.2 10.8 11.1 139.2 1.775244
194 1 215 130.5 130.3 9.6 11 138.5 2.938067
195 1 214.9 130.3 130.5 11.6 10.6 139.8 1.023377
196 1 215 130.4 130.3 9.9 12.1 139.6 0.022059
197 1 215.1 130.3 129.9 10.3 11.5 139.7 7.854284
198 1 214.8 130.3 130.4 10.6 11.1 140 3.595969
199 1 214.7 130.7 130.8 11.2 11.2 139.4 7.97424
200 1 214.3 129.9 129.9 10.2 11.5 139.6 0.224731
;
proc print;
run;
/* input obs Status length Left Rigth Bottom Top Diagonal Transpar; */
proc anova;
class Status;
model length Left Rigth Bottom Top Diagonal Transpar = Status;
means Status / tukey lines;
run;
Resultados do ANOVA e Tukey
arquivo para download
Resultados do SAS