quinta-feira, 22 de agosto de 2024

Machine Learning Supervisionado para Predição ou Regressão - Sem Outlier - Excel ou Libre Office + SAS + Weka - Arquivo OK

 Machine Learning Supervisionado para Predição ou Regressão - Sem Outlier - Excel ou Libre Office + SAS + Weka - Arquivo OK 



     Machine Learning Supervisionado para

 Predição ou Regressão - Excel ou Libre Office



Bu_Unit

Sales

Price

Qu_level

Claims

NPS

PV

Satisfac

1

65,98108

97,8022

96,77419

13,58025

98,9011

19

97,82609

2

15,8371

98,9011

98,3871

12,34568

97,8022

29

98,91304

3

8,885232

100

100

11,11111

100

21

100

4

12,46401

98,9011

95,16129

12,34568

96,7033

94

96,73913

5

80,66639

21,97802

19,35484

100

2,197802

34

21,73913

6

32,16783

23,07692

22,58065

97,53086

3,296703

64

23,91304

7

23,44714

24,17582

24,19355

96,2963

2,747253

61

25

8

89,96298

24,17582

19,35484

95,06173

2,197802

25

26,08696

9

31,4274

64,83516

56,45161

50,61728

65,93407

10

65,21739

10

11,22995

65,93407

51,6129

49,38272

71,42857

3

66,30435

11

77,45784

70,32967

53,22581

46,91358

63,73626

56

68,47826

12

23,89963

68,13187

51,6129

45,67901

61,53846

4

67,3913

13

7,40436

86,81319

80,64516

25,92593

90,10989

90

86,95652

14

0,287947

87,91209

79,03226

24,69136

85,71429

48

85,86957

15

83,42246

87,91209

77,41935

22,22222

90,10989

78

88,04348

16

100

86,81319

75,80645

25,92593

84,61538

88

84,78261

 

 

 

 

 

média=

724

 


Slides elaborados na sala de aulas


Conventional and Robust Data Science for SML to Prediction or Regression

  Conventional and Robust Data Science for SML to Prediction or Regression 

SAS Program


Data Customer;

Input Bu_Unit  Sales  Price Qu_level Claims NPS PV Satisfac;

Cards;

1 65.98108 97.8022 96.77419 13.58025 98.9011 19 97.82609

2 15.8371 98.9011 98.3871 12.34568 97.8022 29 98.91304

3 8.885232 100 100 11.11111 100 21 100

4 12.46401 98.9011 95.16129 12.34568 96.7033 94 96.73913

5 80.66639 21.97802 19.35484 100 2.197802 34 21.73913

6 32.16783 23.07692 22.58065 97.53086 3.296703 64 23.91304

7 23.44714 24.17582 24.19355 96.2963 2.747253 61 25

8 89.96298 24.17582 19.35484 95.06173 2.197802 25 26.08696

9 31.4274 64.83516 56.45161 50.61728 65.93407 10 65.21739

10 11.22995 65.93407 51.6129 49.38272 71.42857 3 66.30435

11 77.45784 70.32967 53.22581 46.91358 63.73626 56 68.47826

12 23.89963 68.13187 51.6129 45.67901 61.53846 4 67.3913

13 7.40436 86.81319 80.64516 25.92593 90.10989 90 86.95652

14 0.287947 87.91209 79.03226 24.69136 85.71429 48 85.86957

15 83.42246 87.91209 77.41935 22.22222 90.10989 78 88.04348

16 100 86.81319 75.80645 25.92593 84.61538 88 84.78261

;

proc print; run;

/* Input Bu_Unit  Sales  Price Qu_level Claims NPS PV Satisfac; */

proc reg;

   model  Satisfac = Sales  Price Qu_level Claims PV NPS;

Run;


proc robustreg;

model Satisfac = Sales  Price Qu_level Claims NPS / diagnostic;

Run;

Machine Learning Supervisionado para Predição ou Regressão - Excel ou Libre Office  

 MLS Causas - Efeito ou Regressão ou Predição - Weka


Download Arquivo para Weka


@RELATION Customer

@ATTRIBUTE U_Neg REAL

@ATTRIBUTE Vendas REAL

@ATTRIBUTE Preco REAL

@ATTRIBUTE Niv_Qual REAL

@ATTRIBUTE Reclama REAL

@ATTRIBUTE NPS REAL

@ATTRIBUTE Satisf REAL

@DATA

1,65.98107775,97.8021978,96.77419355,13.58024691,98.9010989,97.82608696

2,15.83710407,98.9010989,98.38709677,12.34567901,97.8021978,98.91304348

3,8.885232415,100,100,11.11111111,100,100

4,12.46400658,98.9010989,95.16129032,12.34567901,96.7032967,96.73913043

5,80.66639243,21.97802198,19.35483871,100,2.197802198,21.73913043

6,32.16783217,23.07692308,22.58064516,97.5308642,3.296703297,23.91304348

7,23.44714109,24.17582418,24.19354839,96.2962963,2.747252747,25

8,89.9629782,24.17582418,19.35483871,95.0617284,2.197802198,26.08695652

9,31.42739613,64.83516484,56.4516129,50.61728395,65.93406593,65.2173913

10,11.22994652,65.93406593,51.61290323,49.38271605,71.42857143,66.30434783

11,77.45783628,70.32967033,53.22580645,46.91358025,63.73626374,68.47826087

12,23.89962978,68.13186813,51.61290323,45.67901235,61.53846154,67.39130435

13,7.404360346,86.81318681,80.64516129,25.92592593,90.10989011,86.95652174

14,0.287947347,87.91208791,79.03225806,24.69135802,85.71428571,85.86956522

15,83.42245989,87.91208791,77.41935484,22.22222222,90.10989011,88.04347826

16,100,86.81318681,75.80645161,25.92592593,84.61538462,84.7826087







Linear Regression Model


Satisf =


      0.2481 * Preco +

      0.1063 * Niv_Qual +

     -0.4275 * Reclama +

      0.1135 * NPS +

     57.4038





Nenhum comentário:

Postar um comentário