Machine Learning Supervisionado para Predição ou Regressão - Sem Outlier - Excel ou Libre Office + SAS + Weka - Arquivo OK
Machine Learning Supervisionado para
Predição ou Regressão - Excel ou Libre Office
Bu_Unit | Sales | Price | Qu_level | Claims | NPS | PV | Satisfac |
1 | 65,98108 | 97,8022 | 96,77419 | 13,58025 | 98,9011 | 19 | 97,82609 |
2 | 15,8371 | 98,9011 | 98,3871 | 12,34568 | 97,8022 | 29 | 98,91304 |
3 | 8,885232 | 100 | 100 | 11,11111 | 100 | 21 | 100 |
4 | 12,46401 | 98,9011 | 95,16129 | 12,34568 | 96,7033 | 94 | 96,73913 |
5 | 80,66639 | 21,97802 | 19,35484 | 100 | 2,197802 | 34 | 21,73913 |
6 | 32,16783 | 23,07692 | 22,58065 | 97,53086 | 3,296703 | 64 | 23,91304 |
7 | 23,44714 | 24,17582 | 24,19355 | 96,2963 | 2,747253 | 61 | 25 |
8 | 89,96298 | 24,17582 | 19,35484 | 95,06173 | 2,197802 | 25 | 26,08696 |
9 | 31,4274 | 64,83516 | 56,45161 | 50,61728 | 65,93407 | 10 | 65,21739 |
10 | 11,22995 | 65,93407 | 51,6129 | 49,38272 | 71,42857 | 3 | 66,30435 |
11 | 77,45784 | 70,32967 | 53,22581 | 46,91358 | 63,73626 | 56 | 68,47826 |
12 | 23,89963 | 68,13187 | 51,6129 | 45,67901 | 61,53846 | 4 | 67,3913 |
13 | 7,40436 | 86,81319 | 80,64516 | 25,92593 | 90,10989 | 90 | 86,95652 |
14 | 0,287947 | 87,91209 | 79,03226 | 24,69136 | 85,71429 | 48 | 85,86957 |
15 | 83,42246 | 87,91209 | 77,41935 | 22,22222 | 90,10989 | 78 | 88,04348 |
16 | 100 | 86,81319 | 75,80645 | 25,92593 | 84,61538 | 88 | 84,78261 |
| | | | | média= | 724 | |
Slides elaborados na sala de aulas
Conventional and Robust Data Science for SML to Prediction or Regression
Conventional and Robust Data Science for SML to Prediction or Regression
SAS Program
Data Customer;
Input Bu_Unit Sales Price Qu_level Claims NPS PV Satisfac;
Cards;
1 65.98108 97.8022 96.77419 13.58025 98.9011 19 97.82609
2 15.8371 98.9011 98.3871 12.34568 97.8022 29 98.91304
3 8.885232 100 100 11.11111 100 21 100
4 12.46401 98.9011 95.16129 12.34568 96.7033 94 96.73913
5 80.66639 21.97802 19.35484 100 2.197802 34 21.73913
6 32.16783 23.07692 22.58065 97.53086 3.296703 64 23.91304
7 23.44714 24.17582 24.19355 96.2963 2.747253 61 25
8 89.96298 24.17582 19.35484 95.06173 2.197802 25 26.08696
9 31.4274 64.83516 56.45161 50.61728 65.93407 10 65.21739
10 11.22995 65.93407 51.6129 49.38272 71.42857 3 66.30435
11 77.45784 70.32967 53.22581 46.91358 63.73626 56 68.47826
12 23.89963 68.13187 51.6129 45.67901 61.53846 4 67.3913
13 7.40436 86.81319 80.64516 25.92593 90.10989 90 86.95652
14 0.287947 87.91209 79.03226 24.69136 85.71429 48 85.86957
15 83.42246 87.91209 77.41935 22.22222 90.10989 78 88.04348
16 100 86.81319 75.80645 25.92593 84.61538 88 84.78261
;
proc print; run;
/* Input Bu_Unit Sales Price Qu_level Claims NPS PV Satisfac; */
proc reg;
model Satisfac = Sales Price Qu_level Claims PV NPS;
Run;
proc robustreg;
model Satisfac = Sales Price Qu_level Claims NPS / diagnostic;
Run;
Machine Learning Supervisionado para Predição ou Regressão - Excel ou Libre Office
MLS Causas - Efeito ou Regressão ou Predição - Weka
@RELATION Customer
@ATTRIBUTE U_Neg REAL
@ATTRIBUTE Vendas REAL
@ATTRIBUTE Preco REAL
@ATTRIBUTE Niv_Qual REAL
@ATTRIBUTE Reclama REAL
@ATTRIBUTE NPS REAL
@ATTRIBUTE Satisf REAL
@DATA
1,65.98107775,97.8021978,96.77419355,13.58024691,98.9010989,97.82608696
2,15.83710407,98.9010989,98.38709677,12.34567901,97.8021978,98.91304348
3,8.885232415,100,100,11.11111111,100,100
4,12.46400658,98.9010989,95.16129032,12.34567901,96.7032967,96.73913043
5,80.66639243,21.97802198,19.35483871,100,2.197802198,21.73913043
6,32.16783217,23.07692308,22.58064516,97.5308642,3.296703297,23.91304348
7,23.44714109,24.17582418,24.19354839,96.2962963,2.747252747,25
8,89.9629782,24.17582418,19.35483871,95.0617284,2.197802198,26.08695652
9,31.42739613,64.83516484,56.4516129,50.61728395,65.93406593,65.2173913
10,11.22994652,65.93406593,51.61290323,49.38271605,71.42857143,66.30434783
11,77.45783628,70.32967033,53.22580645,46.91358025,63.73626374,68.47826087
12,23.89962978,68.13186813,51.61290323,45.67901235,61.53846154,67.39130435
13,7.404360346,86.81318681,80.64516129,25.92592593,90.10989011,86.95652174
14,0.287947347,87.91208791,79.03225806,24.69135802,85.71428571,85.86956522
15,83.42245989,87.91208791,77.41935484,22.22222222,90.10989011,88.04347826
16,100,86.81318681,75.80645161,25.92592593,84.61538462,84.7826087
Linear Regression Model
Satisf =
0.2481 * Preco +
0.1063 * Niv_Qual +
-0.4275 * Reclama +
0.1135 * NPS +
57.4038
Nenhum comentário:
Postar um comentário