link: https://meet.google.com/xxr-waro-dfq
Videoaulas:
https://youtu.be/Ukz9fo8CGpE
Pauta:
- Clínicas e Cursos no Verão
- Últimos slides - Parcerias
- Analises Pesquisa de Mercado
- Carta Clinicas
- Duvidas de Exercícios
Machine Learning Não Supervicionado - Cluster Analysis
data pessoas;
input cat $ imc corr kcal;
cards;
AT 20.475 217.4 12400
PR 25.175 10.2 10650
SE 25.575
11.7 10800
SEM 23.05 66.4 11800
;
proc cluster data=pessoas outtree = arvore method = average;
var imc corr kcal;
id cat;
run;
PROC TREE DATA = arvore;
RUN;
Tambem PCA - Biplot - Análise Discriminante Canónica
Programa SAS para MANOVA
data Q_Vida;
input cat $ imc corr kcal;
datalines;
AT 20.2 60.7 3200
AT 21.3 54.8 3100
AT 19.3 49.6 2800
AT 21.1 52.3 3300
SEM 22.4 14.9 2600
SEM 21.9 17.8 2700
SEM 23.8 18.6 3200
SEM 24.1 15.1 3300
SED 27.3 2.5 2700
SED 23.4 4.3 2300
SED 25.2 2.3 2600
SED 26.4 2.6 3200
PRO 26.2 4.1 2600
PRO 24.2 2.1 2700
PRO 25.4 1.9 2650
;
proc print;
run;
proc glm;
class cat;
model imc corr kcal = cat;
contrast " Atl e Semiat Vs Seden e Prof" cat 1 -1 -1 1;
contrast " Professor Vs Sedentario" cat 0 1 -1 0;
manova h=_all_ / printe printh;
run;
Arquivo em padrão Texto,
completo, Dinheiro Falso:
(Somente copiar e colar no Programa Notes do Computador)
@RELATION banco
@ATTRIBUTE Length REAL
@ATTRIBUTE Left REAL
@ATTRIBUTE Right REAL
@ATTRIBUTE Bottom REAL
@ATTRIBUTE Top REAL
@ATTRIBUTE Diagonal REAL
@ATTRIBUTE Class {0,1}
@DATA
214.8,131.0,131.1,9.0,9.7,141.0,0
214.6,129.7,129.7,8.1,9.5,141.7,0
214.8,129.7,129.7,8.7,9.6,142.2,0
214.8,129.7,129.6,7.5,10.4,142.0,0
215.0,129.6,129.7,10.4,7.7,141.8,0
215.7,130.8,130.5,9.0,10.1,141.4,0
215.5,129.5,129.7,7.9,9.6,141.6,0
214.5,129.6,129.2,7.2,10.7,141.7,0
214.9,129.4,129.7,8.2,11.0,141.9,0
215.2,130.4,130.3,9.2,10.0,140.7,0
215.3,130.4,130.3,7.9,11.7,141.8,0
215.1,129.5,129.6,7.7,10.5,142.2,0
215.2,130.8,129.6,7.9,10.8,141.4,0
214.7,129.7,129.7,7.7,10.9,141.7,0
215.1,129.9,129.7,7.7,10.8,141.8,0
214.5,129.8,129.8,9.3,8.5,141.6,0
214.6,129.9,130.1,8.2,9.8,141.7,0
215.0,129.9,129.7,9.0,9.0,141.9,0
215.2,129.6,129.6,7.4,11.5,141.5,0
214.7,130.2,129.9,8.6,10.0,141.9,0
215.0,129.9,129.3,8.4,10.0,141.4,0
215.6,130.5,130.0,8.1,10.3,141.6,0
215.3,130.6,130.0,8.4,10.8,141.5,0
215.7,130.2,130.0,8.7,10.0,141.6,0
215.1,129.7,129.9,7.4,10.8,141.1,0
215.3,130.4,130.4,8.0,11.0,142.3,0
215.5,130.2,130.1,8.9,9.8,142.4,0
215.1,130.3,130.3,9.8,9.5,141.9,0
215.1,130.0,130.0,7.4,10.5,141.8,0
214.8,129.7,129.3,8.3,9.0,142.0,0
215.2,130.1,129.8,7.9,10.7,141.8,0
214.8,129.7,129.7,8.6,9.1,142.3,0
215.0,130.0,129.6,7.7,10.5,140.7,0
215.6,130.4,130.1,8.4,10.3,141.0,0
215.9,130.4,130.0,8.9,10.6,141.4,0
214.6,130.2,130.2,9.4,9.7,141.8,0
215.5,130.3,130.0,8.4,9.7,141.8,0
215.3,129.9,129.4,7.9,10.0,142.0,0
215.3,130.3,130.1,8.5,9.3,142.1,0
213.9,130.3,129.0,8.1,9.7,141.3,0
214.4,129.8,129.2,8.9,9.4,142.3,0
214.8,130.1,129.6,8.8,9.9,140.9,0
214.9,129.6,129.4,9.3,9.0,141.7,0
214.9,130.4,129.7,9.0,9.8,140.9,0
214.8,129.4,129.1,8.2,10.2,141.0,0
214.3,129.5,129.4,8.3,10.2,141.8,0
214.8,129.9,129.7,8.3,10.2,141.5,0
214.8,129.9,129.7,7.3,10.9,142.0,0
214.6,129.7,129.8,7.9,10.3,141.1,0
214.5,129.0,129.6,7.8,9.8,142.0,0
214.6,129.8,129.4,7.2,10.0,141.3,0
215.3,130.6,130.0,9.5,9.7,141.1,0
214.5,130.1,130.0,7.8,10.9,140.9,0
215.4,130.2,130.2,7.6,10.9,141.6,0
214.5,129.4,129.5,7.9,10.0,141.4,0
215.2,129.7,129.4,9.2,9.4,142.0,0
215.7,130.0,129.4,9.2,10.4,141.2,0
215.0,129.6,129.4,8.8,9.0,141.1,0
215.1,130.1,129.9,7.9,11.0,141.3,0
215.1,130.0,129.8,8.2,10.3,141.4,0
215.1,129.6,129.3,8.3,9.9,141.6,0
215.3,129.7,129.4,7.5,10.5,141.5,0
215.4,129.8,129.4,8.0,10.6,141.5,0
214.5,130.0,129.5,8.0,10.8,141.4,0
215.0,130.0,129.8,8.6,10.6,141.5,0
215.2,130.6,130.0,8.8,10.6,140.8,0
214.6,129.5,129.2,7.7,10.3,141.3,0
214.8,129.7,129.3,9.1,9.5,141.5,0
215.1,129.6,129.8,8.6,9.8,141.8,0
214.9,130.2,130.2,8.0,11.2,139.6,0
213.8,129.8,129.5,8.4,11.1,140.9,0
215.2,129.9,129.5,8.2,10.3,141.4,0
215.0,129.6,130.2,8.7,10.0,141.2,0
214.4,129.9,129.6,7.5,10.5,141.8,0
215.2,129.9,129.7,7.2,10.6,142.1,0
214.1,129.6,129.3,7.6,10.7,141.7,0
214.9,129.9,130.1,8.8,10.0,141.2,0
214.6,129.8,129.4,7.4,10.6,141.0,0
215.2,130.5,129.8,7.9,10.9,140.9,0
214.6,129.9,129.4,7.9,10.0,141.8,0
215.1,129.7,129.7,8.6,10.3,140.6,0
214.9,129.8,129.6,7.5,10.3,141.0,0
215.2,129.7,129.1,9.0,9.7,141.9,0
215.2,130.1,129.9,7.9,10.8,141.3,0
215.4,130.7,130.2,9.0,11.1,141.2,0
215.1,129.9,129.6,8.9,10.2,141.5,0
215.2,129.9,129.7,8.7,9.5,141.6,0
215.0,129.6,129.2,8.4,10.2,142.1,0
214.9,130.3,129.9,7.4,11.2,141.5,0
215.0,129.9,129.7,8.0,10.5,142.0,0
214.7,129.7,129.3,8.6,9.6,141.6,0
215.4,130.0,129.9,8.5,9.7,141.4,0
214.9,129.4,129.5,8.2,9.9,141.5,0
214.5,129.5,129.3,7.4,10.7,141.5,0
214.7,129.6,129.5,8.3,10.0,142.0,0
215.6,129.9,129.9,9.0,9.5,141.7,0
215.0,130.4,130.3,9.1,10.2,141.1,0
214.4,129.7,129.5,8.0,10.3,141.2,0
215.1,130.0,129.8,9.1,10.2,141.5,0
214.7,130.0,129.4,7.8,10.0,141.2,0
214.4,130.1,130.3,9.7,11.7,139.8,1
214.9,130.5,130.2,11.0,11.5,139.5,1
214.9,130.3,130.1,8.7,11.7,140.2,1
215.0,130.4,130.6,9.9,10.9,140.3,1
214.7,130.2,130.3,11.8,10.9,139.7,1
215.0,130.2,130.2,10.6,10.7,139.9,1
215.3,130.3,130.1,9.3,12.1,140.2,1
214.8,130.1,130.4,9.8,11.5,139.9,1
215.0,130.2,129.9,10.0,11.9,139.4,1
215.2,130.6,130.8,10.4,11.2,140.3,1
215.2,130.4,130.3,8.0,11.5,139.2,1
215.1,130.5,130.3,10.6,11.5,140.1,1
215.4,130.7,131.1,9.7,11.8,140.6,1
214.9,130.4,129.9,11.4,11.0,139.9,1
215.1,130.3,130.0,10.6,10.8,139.7,1
215.5,130.4,130.0,8.2,11.2,139.2,1
214.7,130.6,130.1,11.8,10.5,139.8,1
214.7,130.4,130.1,12.1,10.4,139.9,1
214.8,130.5,130.2,11.0,11.0,140.0,1
214.4,130.2,129.9,10.1,12.0,139.2,1
214.8,130.3,130.4,10.1,12.1,139.6,1
215.1,130.6,130.3,12.3,10.2,139.6,1
215.3,130.8,131.1,11.6,10.6,140.2,1
215.1,130.7,130.4,10.5,11.2,139.7,1
214.7,130.5,130.5,9.9,10.3,140.1,1
214.9,130.0,130.3,10.2,11.4,139.6,1
215.0,130.4,130.4,9.4,11.6,140.2,1
215.5,130.7,130.3,10.2,11.8,140.0,1
215.1,130.2,130.2,10.1,11.3,140.3,1
214.5,130.2,130.6,9.8,12.1,139.9,1
214.3,130.2,130.0,10.7,10.5,139.8,1
214.5,130.2,129.8,12.3,11.2,139.2,1
214.9,130.5,130.2,10.6,11.5,139.9,1
214.6,130.2,130.4,10.5,11.8,139.7,1
214.2,130.0,130.2,11.0,11.2,139.5,1
214.8,130.1,130.1,11.9,11.1,139.5,1
214.6,129.8,130.2,10.7,11.1,139.4,1
214.9,130.7,130.3,9.3,11.2,138.3,1
214.6,130.4,130.4,11.3,10.8,139.8,1
214.5,130.5,130.2,11.8,10.2,139.6,1
214.8,130.2,130.3,10.0,11.9,139.3,1
214.7,130.0,129.4,10.2,11.0,139.2,1
214.6,130.2,130.4,11.2,10.7,139.9,1
215.0,130.5,130.4,10.6,11.1,139.9,1
214.5,129.8,129.8,11.4,10.0,139.3,1
214.9,130.6,130.4,11.9,10.5,139.8,1
215.0,130.5,130.4,11.4,10.7,139.9,1
215.3,130.6,130.3,9.3,11.3,138.1,1
214.7,130.2,130.1,10.7,11.0,139.4,1
214.9,129.9,130.0,9.9,12.3,139.4,1
214.9,130.3,129.9,11.9,10.6,139.8,1
214.6,129.9,129.7,11.9,10.1,139.0,1
214.6,129.7,129.3,10.4,11.0,139.3,1
214.5,130.1,130.1,12.1,10.3,139.4,1
214.5,130.3,130.0,11.0,11.5,139.5,1
215.1,130.0,130.3,11.6,10.5,139.7,1
214.2,129.7,129.6,10.3,11.4,139.5,1
214.4,130.1,130.0,11.3,10.7,139.2,1
214.8,130.4,130.6,12.5,10.0,139.3,1
214.6,130.6,130.1,8.1,12.1,137.9,1
215.6,130.1,129.7,7.4,12.2,138.4,1
214.9,130.5,130.1,9.9,10.2,138.1,1
214.6,130.1,130.0,11.5,10.6,139.5,1
214.7,130.1,130.2,11.6,10.9,139.1,1
214.3,130.3,130.0,11.4,10.5,139.8,1
215.1,130.3,130.6,10.3,12.0,139.7,1
216.3,130.7,130.4,10.0,10.1,138.8,1
215.6,130.4,130.1,9.6,11.2,138.6,1
214.8,129.9,129.8,9.6,12.0,139.6,1
214.9,130.0,129.9,11.4,10.9,139.7,1
213.9,130.7,130.5,8.7,11.5,137.8,1
214.2,130.6,130.4,12.0,10.2,139.6,1
214.8,130.5,130.3,11.8,10.5,139.4,1
214.8,129.6,130.0,10.4,11.6,139.2,1
214.8,130.1,130.0,11.4,10.5,139.6,1
214.9,130.4,130.2,11.9,10.7,139.0,1
214.3,130.1,130.1,11.6,10.5,139.7,1
214.5,130.4,130.0,9.9,12.0,139.6,1
214.8,130.5,130.3,10.2,12.1,139.1,1
214.5,130.2,130.4,8.2,11.8,137.8,1
215.0,130.4,130.1,11.4,10.7,139.1,1
214.8,130.6,130.6,8.0,11.4,138.7,1
215.0,130.5,130.1,11.0,11.4,139.3,1
214.6,130.5,130.4,10.1,11.4,139.3,1
214.7,130.2,130.1,10.7,11.1,139.5,1
214.7,130.4,130.0,11.5,10.7,139.4,1
214.5,130.4,130.0,8.0,12.2,138.5,1
214.8,130.0,129.7,11.4,10.6,139.2,1
214.8,129.9,130.2,9.6,11.9,139.4,1
214.6,130.3,130.2,12.7,9.1,139.2,1
215.1,130.2,129.8,10.2,12.0,139.4,1
215.4,130.5,130.6,8.8,11.0,138.6,1
214.7,130.3,130.2,10.8,11.1,139.2,1
215.0,130.5,130.3,9.6,11.0,138.5,1
214.9,130.3,130.5,11.6,10.6,139.8,1
215.0,130.4,130.3,9.9,12.1,139.6,1
215.1,130.3,129.9,10.3,11.5,139.7,1
214.8,130.3,130.4,10.6,11.1,140.0,1
214.7,130.7,130.8,11.2,11.2,139.4,1
214.3,129.9,129.9,10.2,11.5,139.6,1
Machine Learning Supervisionado para Previsão
Preço dos Imoveis
Arquivo Weka com Dados Simulados Computacionalmente - Aplificar Tamanaho da Amostra (Monte Carlo - Bootstraping -
Jackknife etc.)
Para Weka não acusar Erro, por poucas linhas no arquivo de dados
@RELATION Precifica
@ATTRIBUTE Tam_Cas REAL
@ATTRIBUTE Tam_Terre REAL
@ATTRIBUTE Quartos REAL
@ATTRIBUTE Granito REAL
@ATTRIBUTE Banh_Refor REAL
@ATTRIBUTE Preco REAL
@DATA
3529,9191,6,0,0,205
3247,10061,5,1,1,224.9
4032,10150,5,0,1,197.9
2397,14156,4,1,0,189.9
2200,9600,4,0,1,195
3536,19994,6,1,1,325
2983,9365,5,0,1,230
3388,9626,6,0,0,214.95
3639.5,10105.5,5,1,1,211.4
3214.5,12153,5,0,1,193.9
2298.5,11878,4,1,0,192.45
2868,14797,4,0,1,260
3259.5,14679.5,6,1,1,277.5
Mayara Pardi Ikeda
21:54
8.6159 * TamanhoLote +
19842.4386 * Quartos +
24927.7258 * BanheiroReformado +
4754.3438
Robson Campos de Lima
22:00
PrecoVenda =
-26.6882 * TamanhoCasa +
7.0551 * TamanhoLote +
43166.0767 * Quartos +
42292.0901 * BanheiroReformado +
-21661.1208
Nenhum comentário:
Postar um comentário