quinta-feira, 10 de dezembro de 2020

Aula 10/12/2020

 link: https://meet.google.com/xxr-waro-dfq

Videoaulas:

https://youtu.be/fmp9sJasXU0

https://youtu.be/Ukz9fo8CGpE





Pauta:

- Clínicas e Cursos no Verão

- Últimos slides - Parcerias 

- Analises Pesquisa de Mercado

- Carta Clinicas

- Duvidas de Exercícios














Machine Learning Não Supervicionado - Cluster Analysis

data  pessoas;
input cat $ imc corr kcal;
cards;
AT 20.475 217.4 12400

PR 25.175 10.2 10650

SE  25.575 11.7 10800

SEM 23.05 66.4 11800

;

proc cluster data=pessoas outtree = arvore method = average;
var imc corr kcal;
id cat;
run;
PROC TREE DATA = arvore;
RUN;








Tambem PCA - Biplot - Análise Discriminante Canónica





























Programa SAS para MANOVA


data Q_Vida;
input cat $ imc corr kcal;
datalines;
AT 20.2 60.7 3200
AT 21.3 54.8 3100
AT 19.3 49.6 2800
AT 21.1 52.3 3300
SEM 22.4 14.9 2600
SEM 21.9 17.8 2700
SEM 23.8 18.6 3200
SEM 24.1 15.1 3300
SED  27.3 2.5 2700
SED  23.4 4.3 2300
SED  25.2 2.3 2600
SED  26.4 2.6 3200
PRO 26.2 4.1 2600
PRO 24.2 2.1 2700
PRO 25.4 1.9 2650
;

proc print;
run;


proc glm;
 class cat;
 model imc corr kcal  = cat;
  contrast " Atl e Semiat Vs Seden e Prof" cat 1 -1 -1 1;
 contrast " Professor Vs Sedentario" cat 0 1 -1 0;
 manova h=_all_ / printe printh;
run;



Arquivo em padrão Texto, 


completo, Dinheiro Falso:


(Somente copiar e colar no Programa Notes do Computador)


@RELATION banco

@ATTRIBUTE Length REAL
@ATTRIBUTE Left REAL
@ATTRIBUTE Right REAL
@ATTRIBUTE Bottom REAL
@ATTRIBUTE Top REAL
@ATTRIBUTE Diagonal REAL
@ATTRIBUTE Class {0,1}

@DATA      

214.8,131.0,131.1,9.0,9.7,141.0,0
214.6,129.7,129.7,8.1,9.5,141.7,0
214.8,129.7,129.7,8.7,9.6,142.2,0
214.8,129.7,129.6,7.5,10.4,142.0,0
215.0,129.6,129.7,10.4,7.7,141.8,0
215.7,130.8,130.5,9.0,10.1,141.4,0
215.5,129.5,129.7,7.9,9.6,141.6,0
214.5,129.6,129.2,7.2,10.7,141.7,0
214.9,129.4,129.7,8.2,11.0,141.9,0
215.2,130.4,130.3,9.2,10.0,140.7,0
215.3,130.4,130.3,7.9,11.7,141.8,0
215.1,129.5,129.6,7.7,10.5,142.2,0
215.2,130.8,129.6,7.9,10.8,141.4,0
214.7,129.7,129.7,7.7,10.9,141.7,0
215.1,129.9,129.7,7.7,10.8,141.8,0
214.5,129.8,129.8,9.3,8.5,141.6,0
214.6,129.9,130.1,8.2,9.8,141.7,0
215.0,129.9,129.7,9.0,9.0,141.9,0
215.2,129.6,129.6,7.4,11.5,141.5,0
214.7,130.2,129.9,8.6,10.0,141.9,0
215.0,129.9,129.3,8.4,10.0,141.4,0
215.6,130.5,130.0,8.1,10.3,141.6,0
215.3,130.6,130.0,8.4,10.8,141.5,0
215.7,130.2,130.0,8.7,10.0,141.6,0
215.1,129.7,129.9,7.4,10.8,141.1,0
215.3,130.4,130.4,8.0,11.0,142.3,0
215.5,130.2,130.1,8.9,9.8,142.4,0
215.1,130.3,130.3,9.8,9.5,141.9,0
215.1,130.0,130.0,7.4,10.5,141.8,0
214.8,129.7,129.3,8.3,9.0,142.0,0
215.2,130.1,129.8,7.9,10.7,141.8,0
214.8,129.7,129.7,8.6,9.1,142.3,0
215.0,130.0,129.6,7.7,10.5,140.7,0
215.6,130.4,130.1,8.4,10.3,141.0,0
215.9,130.4,130.0,8.9,10.6,141.4,0
214.6,130.2,130.2,9.4,9.7,141.8,0
215.5,130.3,130.0,8.4,9.7,141.8,0
215.3,129.9,129.4,7.9,10.0,142.0,0
215.3,130.3,130.1,8.5,9.3,142.1,0
213.9,130.3,129.0,8.1,9.7,141.3,0
214.4,129.8,129.2,8.9,9.4,142.3,0
214.8,130.1,129.6,8.8,9.9,140.9,0
214.9,129.6,129.4,9.3,9.0,141.7,0
214.9,130.4,129.7,9.0,9.8,140.9,0
214.8,129.4,129.1,8.2,10.2,141.0,0
214.3,129.5,129.4,8.3,10.2,141.8,0
214.8,129.9,129.7,8.3,10.2,141.5,0
214.8,129.9,129.7,7.3,10.9,142.0,0
214.6,129.7,129.8,7.9,10.3,141.1,0
214.5,129.0,129.6,7.8,9.8,142.0,0
214.6,129.8,129.4,7.2,10.0,141.3,0
215.3,130.6,130.0,9.5,9.7,141.1,0
214.5,130.1,130.0,7.8,10.9,140.9,0
215.4,130.2,130.2,7.6,10.9,141.6,0
214.5,129.4,129.5,7.9,10.0,141.4,0
215.2,129.7,129.4,9.2,9.4,142.0,0
215.7,130.0,129.4,9.2,10.4,141.2,0
215.0,129.6,129.4,8.8,9.0,141.1,0
215.1,130.1,129.9,7.9,11.0,141.3,0
215.1,130.0,129.8,8.2,10.3,141.4,0
215.1,129.6,129.3,8.3,9.9,141.6,0
215.3,129.7,129.4,7.5,10.5,141.5,0
215.4,129.8,129.4,8.0,10.6,141.5,0
214.5,130.0,129.5,8.0,10.8,141.4,0
215.0,130.0,129.8,8.6,10.6,141.5,0
215.2,130.6,130.0,8.8,10.6,140.8,0
214.6,129.5,129.2,7.7,10.3,141.3,0
214.8,129.7,129.3,9.1,9.5,141.5,0
215.1,129.6,129.8,8.6,9.8,141.8,0
214.9,130.2,130.2,8.0,11.2,139.6,0
213.8,129.8,129.5,8.4,11.1,140.9,0
215.2,129.9,129.5,8.2,10.3,141.4,0
215.0,129.6,130.2,8.7,10.0,141.2,0
214.4,129.9,129.6,7.5,10.5,141.8,0
215.2,129.9,129.7,7.2,10.6,142.1,0
214.1,129.6,129.3,7.6,10.7,141.7,0
214.9,129.9,130.1,8.8,10.0,141.2,0
214.6,129.8,129.4,7.4,10.6,141.0,0
215.2,130.5,129.8,7.9,10.9,140.9,0
214.6,129.9,129.4,7.9,10.0,141.8,0
215.1,129.7,129.7,8.6,10.3,140.6,0
214.9,129.8,129.6,7.5,10.3,141.0,0
215.2,129.7,129.1,9.0,9.7,141.9,0
215.2,130.1,129.9,7.9,10.8,141.3,0
215.4,130.7,130.2,9.0,11.1,141.2,0
215.1,129.9,129.6,8.9,10.2,141.5,0
215.2,129.9,129.7,8.7,9.5,141.6,0
215.0,129.6,129.2,8.4,10.2,142.1,0
214.9,130.3,129.9,7.4,11.2,141.5,0
215.0,129.9,129.7,8.0,10.5,142.0,0
214.7,129.7,129.3,8.6,9.6,141.6,0
215.4,130.0,129.9,8.5,9.7,141.4,0
214.9,129.4,129.5,8.2,9.9,141.5,0
214.5,129.5,129.3,7.4,10.7,141.5,0
214.7,129.6,129.5,8.3,10.0,142.0,0
215.6,129.9,129.9,9.0,9.5,141.7,0
215.0,130.4,130.3,9.1,10.2,141.1,0
214.4,129.7,129.5,8.0,10.3,141.2,0
215.1,130.0,129.8,9.1,10.2,141.5,0
214.7,130.0,129.4,7.8,10.0,141.2,0
214.4,130.1,130.3,9.7,11.7,139.8,1
214.9,130.5,130.2,11.0,11.5,139.5,1
214.9,130.3,130.1,8.7,11.7,140.2,1
215.0,130.4,130.6,9.9,10.9,140.3,1
214.7,130.2,130.3,11.8,10.9,139.7,1
215.0,130.2,130.2,10.6,10.7,139.9,1
215.3,130.3,130.1,9.3,12.1,140.2,1
214.8,130.1,130.4,9.8,11.5,139.9,1
215.0,130.2,129.9,10.0,11.9,139.4,1
215.2,130.6,130.8,10.4,11.2,140.3,1
215.2,130.4,130.3,8.0,11.5,139.2,1
215.1,130.5,130.3,10.6,11.5,140.1,1
215.4,130.7,131.1,9.7,11.8,140.6,1
214.9,130.4,129.9,11.4,11.0,139.9,1
215.1,130.3,130.0,10.6,10.8,139.7,1
215.5,130.4,130.0,8.2,11.2,139.2,1
214.7,130.6,130.1,11.8,10.5,139.8,1
214.7,130.4,130.1,12.1,10.4,139.9,1
214.8,130.5,130.2,11.0,11.0,140.0,1
214.4,130.2,129.9,10.1,12.0,139.2,1
214.8,130.3,130.4,10.1,12.1,139.6,1
215.1,130.6,130.3,12.3,10.2,139.6,1
215.3,130.8,131.1,11.6,10.6,140.2,1
215.1,130.7,130.4,10.5,11.2,139.7,1
214.7,130.5,130.5,9.9,10.3,140.1,1
214.9,130.0,130.3,10.2,11.4,139.6,1
215.0,130.4,130.4,9.4,11.6,140.2,1
215.5,130.7,130.3,10.2,11.8,140.0,1
215.1,130.2,130.2,10.1,11.3,140.3,1
214.5,130.2,130.6,9.8,12.1,139.9,1
214.3,130.2,130.0,10.7,10.5,139.8,1
214.5,130.2,129.8,12.3,11.2,139.2,1
214.9,130.5,130.2,10.6,11.5,139.9,1
214.6,130.2,130.4,10.5,11.8,139.7,1
214.2,130.0,130.2,11.0,11.2,139.5,1
214.8,130.1,130.1,11.9,11.1,139.5,1
214.6,129.8,130.2,10.7,11.1,139.4,1
214.9,130.7,130.3,9.3,11.2,138.3,1
214.6,130.4,130.4,11.3,10.8,139.8,1
214.5,130.5,130.2,11.8,10.2,139.6,1
214.8,130.2,130.3,10.0,11.9,139.3,1
214.7,130.0,129.4,10.2,11.0,139.2,1
214.6,130.2,130.4,11.2,10.7,139.9,1
215.0,130.5,130.4,10.6,11.1,139.9,1
214.5,129.8,129.8,11.4,10.0,139.3,1
214.9,130.6,130.4,11.9,10.5,139.8,1
215.0,130.5,130.4,11.4,10.7,139.9,1
215.3,130.6,130.3,9.3,11.3,138.1,1
214.7,130.2,130.1,10.7,11.0,139.4,1
214.9,129.9,130.0,9.9,12.3,139.4,1
214.9,130.3,129.9,11.9,10.6,139.8,1
214.6,129.9,129.7,11.9,10.1,139.0,1
214.6,129.7,129.3,10.4,11.0,139.3,1
214.5,130.1,130.1,12.1,10.3,139.4,1
214.5,130.3,130.0,11.0,11.5,139.5,1
215.1,130.0,130.3,11.6,10.5,139.7,1
214.2,129.7,129.6,10.3,11.4,139.5,1
214.4,130.1,130.0,11.3,10.7,139.2,1
214.8,130.4,130.6,12.5,10.0,139.3,1
214.6,130.6,130.1,8.1,12.1,137.9,1
215.6,130.1,129.7,7.4,12.2,138.4,1
214.9,130.5,130.1,9.9,10.2,138.1,1
214.6,130.1,130.0,11.5,10.6,139.5,1
214.7,130.1,130.2,11.6,10.9,139.1,1
214.3,130.3,130.0,11.4,10.5,139.8,1
215.1,130.3,130.6,10.3,12.0,139.7,1
216.3,130.7,130.4,10.0,10.1,138.8,1
215.6,130.4,130.1,9.6,11.2,138.6,1
214.8,129.9,129.8,9.6,12.0,139.6,1
214.9,130.0,129.9,11.4,10.9,139.7,1
213.9,130.7,130.5,8.7,11.5,137.8,1
214.2,130.6,130.4,12.0,10.2,139.6,1
214.8,130.5,130.3,11.8,10.5,139.4,1
214.8,129.6,130.0,10.4,11.6,139.2,1
214.8,130.1,130.0,11.4,10.5,139.6,1
214.9,130.4,130.2,11.9,10.7,139.0,1
214.3,130.1,130.1,11.6,10.5,139.7,1
214.5,130.4,130.0,9.9,12.0,139.6,1
214.8,130.5,130.3,10.2,12.1,139.1,1
214.5,130.2,130.4,8.2,11.8,137.8,1
215.0,130.4,130.1,11.4,10.7,139.1,1
214.8,130.6,130.6,8.0,11.4,138.7,1
215.0,130.5,130.1,11.0,11.4,139.3,1
214.6,130.5,130.4,10.1,11.4,139.3,1
214.7,130.2,130.1,10.7,11.1,139.5,1
214.7,130.4,130.0,11.5,10.7,139.4,1
214.5,130.4,130.0,8.0,12.2,138.5,1
214.8,130.0,129.7,11.4,10.6,139.2,1
214.8,129.9,130.2,9.6,11.9,139.4,1
214.6,130.3,130.2,12.7,9.1,139.2,1
215.1,130.2,129.8,10.2,12.0,139.4,1
215.4,130.5,130.6,8.8,11.0,138.6,1
214.7,130.3,130.2,10.8,11.1,139.2,1
215.0,130.5,130.3,9.6,11.0,138.5,1
214.9,130.3,130.5,11.6,10.6,139.8,1
215.0,130.4,130.3,9.9,12.1,139.6,1
215.1,130.3,129.9,10.3,11.5,139.7,1
214.8,130.3,130.4,10.6,11.1,140.0,1
214.7,130.7,130.8,11.2,11.2,139.4,1
214.3,129.9,129.9,10.2,11.5,139.6,1



Machine Learning Supervisionado para Previsão
Preço dos Imoveis

Arquivo Weka com Dados Simulados Computacionalmente - Aplificar Tamanaho da Amostra (Monte Carlo - Bootstraping - 

Jackknife etc.)


Para Weka não acusar Erro, por poucas linhas no arquivo de dados



@RELATION Precifica

@ATTRIBUTE Tam_Cas REAL

@ATTRIBUTE Tam_Terre REAL

@ATTRIBUTE Quartos REAL

@ATTRIBUTE Granito REAL

@ATTRIBUTE Banh_Refor REAL


@ATTRIBUTE Preco REAL

@DATA

3529,9191,6,0,0,205
3247,10061,5,1,1,224.9
4032,10150,5,0,1,197.9
2397,14156,4,1,0,189.9
2200,9600,4,0,1,195
3536,19994,6,1,1,325
2983,9365,5,0,1,230
3388,9626,6,0,0,214.95
3639.5,10105.5,5,1,1,211.4
3214.5,12153,5,0,1,193.9
2298.5,11878,4,1,0,192.45
2868,14797,4,0,1,260
3259.5,14679.5,6,1,1,277.5

Mayara Pardi Ikeda
21:54
8.6159 * TamanhoLote + 19842.4386 * Quartos + 24927.7258 * BanheiroReformado + 4754.3438
Robson Campos de Lima
22:00
PrecoVenda = -26.6882 * TamanhoCasa + 7.0551 * TamanhoLote + 43166.0767 * Quartos + 42292.0901 * BanheiroReformado + -21661.1208


Nenhum comentário:

Postar um comentário