Prova da LCE 105 em 29/11
Aplique analise de regressão e Machine Learning Supervisionado para Predição no exemplo abaixo (Exercício Pratico numero 2). Se não tiver tempo de aplicar os três programas (Excel, Weka e SAS) com dois deles já é suficiente.
A prova vale 20% da nota final.
Simule PV (Pós-venda) na faixa de 40 a 100% e calcule a média aritmética.
Envie o resultado, arquivo Excel, Weka e SAS para o e-mail de exercícios colocando no assunto, Prova 1 e seu nome:
economia.usp10@gmail.com
Bu_Unit | Sales | Price | Qu_level | Claims | NPS | PV | Satisfac |
1 | 65,98108 | 97,8022 | 96,77419 | 13,58025 | 98,9011 | 19 | 97,82609 |
2 | 15,8371 | 98,9011 | 98,3871 | 12,34568 | 97,8022 | 29 | 98,91304 |
3 | 8,885232 | 100 | 100 | 11,11111 | 100 | 21 | 100 |
4 | 12,46401 | 98,9011 | 95,16129 | 12,34568 | 96,7033 | 94 | 96,73913 |
5 | 80,66639 | 21,97802 | 19,35484 | 100 | 2,197802 | 34 | 21,73913 |
6 | 32,16783 | 23,07692 | 22,58065 | 97,53086 | 3,296703 | 64 | 23,91304 |
7 | 23,44714 | 24,17582 | 24,19355 | 96,2963 | 2,747253 | 61 | 25 |
8 | 89,96298 | 24,17582 | 19,35484 | 95,06173 | 2,197802 | 25 | 26,08696 |
9 | 31,4274 | 64,83516 | 56,45161 | 50,61728 | 65,93407 | 10 | 65,21739 |
10 | 11,22995 | 65,93407 | 51,6129 | 49,38272 | 71,42857 | 3 | 66,30435 |
11 | 77,45784 | 70,32967 | 53,22581 | 46,91358 | 63,73626 | 56 | 68,47826 |
12 | 23,89963 | 68,13187 | 51,6129 | 45,67901 | 61,53846 | 4 | 67,3913 |
13 | 7,40436 | 86,81319 | 80,64516 | 25,92593 | 90,10989 | 90 | 86,95652 |
14 | 0,287947 | 87,91209 | 79,03226 | 24,69136 | 85,71429 | 48 | 85,86957 |
15 | 83,42246 | 87,91209 | 77,41935 | 22,22222 | 90,10989 | 78 | 88,04348 |
16 | 100 | 86,81319 | 75,80645 | 25,92593 | 84,61538 | 88 | 84,78261 |
| | | | | média= | 724 | |
Arquivo de Dados para o Weka
@RELATION Cliente
@ATTRIBUTE Vendas REAL
@ATTRIBUTE Preco REAL
@ATTRIBUTE Niv_Qual REAL
@ATTRIBUTE Reclama REAL
@ATTRIBUTE NPS REAL
@ATTRIBUTE P_Vend REAL
@ATTRIBUTE Satisf REAL
@DATA
65.98108,97.8022,96.77419,13.58025,98.9011,65,97.82609
15.8371,98.9011,98.3871,12.34568,97.8022,84,98.91304
8.885232,100,100,11.11111,100,46,100
12.46401,98.9011,95.16129,12.34568,96.7033,98,96.73913
80.66639,21.97802,19.35484,100,2.197802,75,21.73913
32.16783,23.07692,22.58065,97.53086,3.296703,97,23.91304
23.44714,24.17582,24.19355,96.2963,2.747253,77,25
89.96298,24.17582,19.35484,95.06173,2.197802,49,26.08696
31.4274,64.83516,56.45161,50.61728,65.93407,99,65.21739
11.22995,65.93407,51.6129,49.38272,71.42857,52,66.30435
77.45784,70.32967,53.22581,46.91358,63.73626,61,68.47826
23.89963,68.13187,51.6129,45.67901,61.53846,48,67.3913
7.40436,86.81319,80.64516,25.92593,90.10989,45,86.95652
0.287947,87.91209,79.03226,24.69136,85.71429,75,85.86957
83.42246,87.91209,77.41935,22.22222,90.10989,60,88.04348
100,86.81319,75.80645,25.92593,84.61538,66,84.78261
Programa SAS - Ciência de Dados Robusta para Machine Learnic Superv. para Casusas & Efeito
Data Customer;
Input Bu_Unit Sales Price Qu_level Claims NPS P_Vend Satisfac;
Cards;
DADOS
;
proc print;
run;
proc reg;
model Satisfac = Sales Price Qu_level Claims NPS P_Vend ;
Run;
proc robustreg;
model Satisfac = Sales Price Qu_level Claims NPS P_Vend ;
Run;
Nenhum comentário:
Postar um comentário